The peculiar electronic structure of PbSe quantum dots.
نویسندگان
چکیده
PbSe is a pseudo-II-VI material distinguished from ordinary II-VI's (e.g., CdSe, ZnSe) by having both its valence band maximum (VBM) and its conduction band minimum (CBM) located at the fourfold-degenerate L-point in the Brillouin zone. It turns out that this feature dramatically affects the properties of the nanosystem. We have calculated the electronic and optical properties of PbSe quantum dots using an atomistic pseudopotential method, finding that the electronic structure is different from that of ordinary II-VI's and, at the same time, is more subtle than what k.p or tight-binding calculations have suggested previously for PbSe. We find the following in PbSe dots: (i) The intraband (valence-to-valence and conduction-to-conduction) as well as interband (valence-to-conduction) excitations involve the massively split L-manifold states. (ii) In contrast to previous suggestions that the spacings between valence band levels will equal those between conduction band levels (because the corresponding effective-masses me approximately mh are similar), we find a densely spaced hole manifold and much sparser electron manifold. This finding reflects the existence of a few valence band maxima in bulk PbSe within approximately 500 meV. This result reverses previous expectations of slow hole cooling in PbSe dots. (iii) The calculated optical absorption spectrum reproduces the measured absorption peak that had previously been attributed to the forbidden 1Sh --> 1Pe or 1Ph --> 1Se transitions on the basis of k.p calculations. However, we find that this transition corresponds to an allowed 1Ph --> 1Pe excitation arising mainly from bulk states near the L valleys on the Gamma-L lines of the Brillouin zone. We discuss this reinterpretation of numerous experimental results.
منابع مشابه
Synthesis and characterization of PbSe quantum dots in phosphate glass
The controlled synthesis of PbSe nanocrystal quantum dots with narrow size distributions was achieved through phase decomposition of the PbSe solid solution in a phosphate glass host. Structural characterization by electron microscopy and x-ray diffraction shows that the dots have mean diameters between 2 and 15 nm. The exciton Bohr radius aB546 nm in PbSe, so these quantum dots provide unusual...
متن کاملFacile synthesis of CsPbBr3/PbSe composite clusters
In this work, CsPbBr3 and PbSe nanocomposites were synthesized to protect perovskite material from self-enlargement during reaction. UV absorption and photoluminescence (PL) spectra indicate that the addition of Se into CsPbBr3 quantum dots modified the electronic structure of CsPbBr3, increasing the band gap from 2.38 to 2.48 eV as the Cs:Se ratio increased to 1:3. Thus, the emission color of ...
متن کاملHigh charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds
Two-dimensional networks of quantum dots connected by atomic bonds have an electronic structure that is distinct from that of arrays of quantum dots coupled by ligand molecules. We prepared atomically coherent two-dimensional percolative networks of PbSe quantum dots connected via atomic bonds. Here, we show that photoexcitation leads to generation of free charges that eventually decay via trap...
متن کاملEffect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملExcited-state relaxation in PbSe quantum dots.
In solids the phonon-assisted, nonradiative decay from high-energy electronic excited states to low-energy electronic excited states is picosecond fast. It was hoped that electron and hole relaxation could be slowed down in quantum dots, due to the unavailability of phonons energy matched to the large energy-level spacings ("phonon-bottleneck"). However, excited-state relaxation was observed to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 6 12 شماره
صفحات -
تاریخ انتشار 2006